Stretch-activated cation channel TRPV4 mediates hyposmotically induced prolactin release from prolactin cells of mozambique tilapia Oreochromis mossambicus.

نویسندگان

  • Soichi Watanabe
  • Andre P Seale
  • E Gordon Grau
  • Toyoji Kaneko
چکیده

In teleost fish, prolactin (PRL) is an important hormone for hyperosmoregulation. The release of PRL from the pituitary of Mozambique tilapia is stimulated by a decrease in extracellular osmolality. Previous studies have shown that hyposmotically induced PRL release is linked with cell volume changes, and that stretch-activated Ca(2+) channels are likely responsible for the initiation of the signal transduction for PRL release. In this study, we identified the stretch-activated Ca(2+) channel transient receptor potential vanilloid 4 (TRPV4) from the rostral pars distalis (RPD) of tilapia acclimated to freshwater (FW). TRPV4 transcripts were ubiquitously expressed in tilapia; the level of expression in RPDs of FW-acclimated fish was lower than that found in RPDs of seawater (SW)-acclimated fish. Immunohistochemical analysis of the pituitary revealed that TRPV4 is localized in the cell membrane of PRL cells of both FW and SW tilapia. A functional assay with CHO-K1 cells showed that tilapia TRPV4 responded to a decrease in extracellular osmolality, and that its function was suppressed by ruthenium red (RR) and activated by 4α-phorbol 12,13-didecanoate (4aPDD). Exposure of dissociated PRL cells from FW-acclimated tilapia to RR blocked hyposmolality induced PRL release. PRL release, on the other hand, was stimulated by 4aPDD. These results indicate that PRL release in response to physiologically relevant changes in extracellular osmolality is mediated by the osmotically sensitive TRPV4 cation channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence that signal transduction for osmoreception is mediated by stretch-activated ion channels in tilapia.

Prolactin (PRL) plays a central role in the freshwater osmoregulation of teleost fish, including the tilapia (Oreochromis mossambicus). Consistent with this action, PRL release from the tilapia pituitary increases as extracellular osmolality is reduced both in vitro and in vivo. Dispersed tilapia PRL cells were incubated in a perfusion chamber that allowed simultaneous measurements of cell volu...

متن کامل

Cell volume increase and extracellular Ca2+ are needed for hyposmotically induced prolactin release in tilapia.

In the tilapia (Oreochromis mossambicus), as in many euryhaline teleost fish, prolactin (PRL) plays a central role in freshwater adaptation, acting on osmoregulatory surfaces to reduce ion and water permeability and increase solute retention. Consistent with these actions, PRL release is stimulated as extracellular osmolality is reduced both in vivo and in vitro. In the current experiments, a p...

متن کامل

Cell volume increase and extracellular Ca are needed for hyposmotically induced prolactin release in tilapia

Seale, A. P., N. H. Richman III, T. Hirano, I. Cooke, and E. G. Grau. Cell volume increase and extracellular Ca2 are needed for hyposmotically induced prolactin release in tilapia. Am J Physiol Cell Physiol 284: C1280–C1289, 2003.. First published January 22, 2003; 10.1152/ajpcell. 00531.2002.—In the tilapia (Oreochromis mossambicus), as in many euryhaline teleost fish, prolactin (PRL) plays a ...

متن کامل

Cortisol rapidly suppresses intracellular calcium and voltage-gated calcium channel activity in prolactin cells of the tilapia (Oreochromis mossambicus).

Cortisol was previously shown to rapidly (10-20 min) reduce the release of prolactin (PRL) from pituitary glands of tilapia (Oreochromis mossambicus). This inhibition of PRL release by cortisol is accompanied by rapid reductions in (45)Ca(2+) and cAMP accumulation. Cortisol's early actions occur through a protein synthesis-independent pathway and are mimicked by a membrane-impermeable analog. T...

متن کامل

Osmosensitivity of prolactin cells is enhanced by the water channel aquaporin-3 in a euryhaline Mozambique tilapia (Oreochromis mossambicus).

In teleost fish, prolactin (PRL) has important actions in the regulation of salt and water balances in freshwater (FW) fish. Consistent with this role, the release of PRL from the pituitary of the Mozambique tilapia is stimulated as extracellular osmolality is reduced. Stretch-activated calcium-permeant ion channels appear to be responsible for the initiation of the signal transduction that lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 302 8  شماره 

صفحات  -

تاریخ انتشار 2012